ONE-DIMENSIONAL MODEL OF HEAT-RECOVERY, NON-RECOVERY COKE OVENS NUMERICAL MODELING OF THE COKING PROCESS FOR THE UHDE HR/NR - COKE OVEN DESIGNS

Dr.-Ing. Rafał Buczyński, IEVB, TU Clausthal Prof. Dr.-Ing. Roman Weber, IEVB, TU Clausthal Dr.-Ing.. Ronald Kim, TK Industrial Solutions (Uhde) Dr.-Ing. Patrick Schwöppe, TK Industrial Solutions (Uhde)

6-8 October 2016

Introduction Objectives Strategy 1D model Validation Conclusions

- Introduction
- OBJECTIVES
- **3** STRATEGY
 - CFD calculations
 - 1D model
- 4 HR-CO MODEL
 - Hydraulic network
 - Combustion sub-model
 - Coking sub-model
 - Inverse method
- **S** VALIDATION
 - Measurements
 - Comparison
 - Sankey diagram
- 6 CONCLUSIONS

Horizontal Chamber (HC-CO)

- Hard coking coal blends incl.:
 - high-volatile (gas) coals
 - lean coals

Feedstock:

- petrol coke & "coal":
- ~22% < VM (d. b.) < ~28% Product spectrum:
- Blast furnace/foundry coke
- Sulfur, sulfuric acid
- Ammonia, ammonium bicarbonate
- → Benzene, tar

Heat Recovery (HR-CO)

Vertical Chamber (VC-CO)

- Hard coking coal blends incl.:
 - lean coals, anthracite
- ~ 20% < VM (d. b.) < ~ 26%
- → Petrol coking "coal" (PCC):
 16% < VM (d. b.) < 20%
- → Blast furnace/foundry coke
- Steam
- → Electricity
- → Gypsum

- Lignite (brown) coals:
 - ash ≤ 7% (d. b.)
 - sulfur ≤ 1% (d. b.)
- Low-grade/-baking hard coals
 - <22% < VM (d. b.) > ~28%
- Lignite coke for COREX/FINEX direct reduction of iron
- Blast furnace coke
- Synthetic natural gas
- Methanol, dimethyl ether

SLOT-TYPE COKE OVEN

NON/ HEAT-RECOVERY COKE OVEN

GOALS

- to carry out numerical calculations of the combustion process inside the HR/NR coke-oven sole-flue,
- to improve the sole-flue design with the three specific aspects:

OBJECTIVES

ASPECTS

1. Safety goal

• sole-flue ceiling temperature should be lower than $1500^{\circ}C$,

2. Optimization goal

the heat transferred through the ceiling to the upper oven should be uniform over the whole ceiling,

3. Simplicity goal

proposed modifications of the sole-flue design should be easy to implement, and should not impede the operation of the unit.

1D MODEL CFD CALCULATIONS

STRATEGY OF THE ANALYSIS

In order to find out the best design solutions a three mathematical models have been developed:

- 1. 3D CFD- based model sole-flue only,
- 2. 3D CFD- based model a half of the oven,
- 3. One-dimensional model of heat-recovery, non-recovery coke oven.

Introduction Objectives

CFD CALCULATIONS (1D MODEL)

ADVANTAGE OF CFD

useful to understand processes inside the oven

ADVANTAGE OF CFD

helpful when oven-design and construction are to be optimized

DISADVANTAGE OF CFD

Long computation time

DISADVANTAGE OF CFD

Transient calculations require super-computers !!!

3.000 (

1D MODEL CFD CALCULATIONS

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

continuity equation sum of mass flow rates

The continuity equation: $\rho \dot{Q}_i - \sum \rho \dot{Q}_i = 0$

The momentum equation: $\sum h_{fi} = 0$, or $\sum h_{fi} = \triangle H$

TIME

 $20 \, \mathrm{MIN}$

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Minor loss coefficients due to obstacles

INVERSE METHOD

Minor loss coefficient due to mixing

MIXING REGIONS IN THE SOLE-FLUE

BRANCH FLOW - GAS

COMBUSTION SUB.

(COKING SUB.)

(INVERSE METHOD)

COMBUSTION SUB.

(COKING SUB.)

(INVERSE METHOD)

Combustion and heat transfer in the hydraulic network:

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Iteration process

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Assumption:

$$\rho_{\text{bulk,s}} \cdot c_{\text{s}} \cdot \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} \left(k_{\text{eff,s}} \frac{\partial T}{\partial x} \right) + \dot{S}_{\text{evap}} + \dot{S}_{\text{cond}} + \dot{S}_{\text{dev}}, \quad \frac{W}{m^3}$$

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Evaporation of moisture

$$\dot{\mathsf{m}}_{\mathsf{evap}} = \mathsf{A} \cdot \mathsf{w}_{\mathsf{evap}} \cdot \rho_{\mathsf{bulk},\mathsf{s}} \cdot \mathsf{g}_{\mathsf{water}}, \frac{\mathsf{kg}_{\mathsf{water}}}{\mathsf{s}}$$

engineering.tomorrow.together.

thyssenkrupp

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Devolatilization

COMBUSTION SUB.

COKING SUB.

INVERSE METHOD

Hydraulic network of tkCSA - coke-oven (Brazil)

INVERSE METHOD COMBUSTION SUB. COKING SUB. HYDRAULIC NETWORK

Validation (tkCSA - Brazil)

PRIMARY AIR

SOLE-FLUE

TIME

50

Institute of

IEVB

Energy Process Engineering

Introduction Objectives Strategy 1D model

MEASUREMENTS (COMPARISION) (SANKEY DIAGRAM)

1D MODEL Introduction STRATEGY **OBJECTIVES**

MEASUREMENTS.

COMPARISION

SANKEY DIAGRAM

Introduction Objectives Strategy 1D model

MEASUREMENTS)

COMPARISION

SANKEY DIAGRAM

STRATEGY 1D MODEL Introduction **OBJECTIVES** SANKEY DIAGRAM MEASUREMENTS)

COMPARISION)

- The one-dimensional time-dependent mathematical model has been used to simulate the performance of the industrial HR coke oven battery,
- The heart of the model is the hydraulic network sub-model which interacts with the coking-sub-model and the combustion sub-model,
- The temperatures measured inside the coking bed have been used to adapt the coking sub-model to the coal blend carbonized,
- The overall network model has predicted well the pressure and temperature distributions in the oven,
- The yield and composition of the raw-gas, the down-comer gas and the sole-flue gas have been well predicted for the whole 60-hours lasting process,
- The main advantage of the whole network model is in its short computation times,

1D COKE-OVEN MODEL IS USED TO:

- predict the optimal channels diameter,
- calculate position of the "sliding-bricks" and "sliding-gates",
- identify regions of excessive temperatures inside the upper-oven or sole-flues,
- estimate coking time.

Buczynski R et al. One-dimensional model of heat-recovery, non-recovery coke ovens. Parts I-IV. Fuel (2016).

doi:10.1016/j.fuel.2016.01.085,

doi:10.1016/j.fuel.2016.01.086,

doi:10.1016/j.fuel.2016.01.087,

doi:10.1016/j.fuel.2016.05.033.

