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Feedstock:
+ Hard coking coal blends » Hard coking coal blends
incl.: incl.:
— high-volatile (gas) coals — lean coals, anthracite
— lean coals ~20%<VM (d.b.) <~ 26%
— petrol coke & “coal™ » Petrol coking “coal” (PCC):
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Product spectrum:
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GOALS

@ to carry out numerical calculations of the combustion process inside the HR/NR -
coke-oven sole-flue,

© to improve the sole-flue design with the three specific aspects: |

ASPECTS

1. Safety goal

@ sole-flue ceiling temperature should be lower than 1500°C,

2. Optimization goal

@ the heat transferred through the ceiling to the upper oven should be uniform over the
whole ceiling,

3. Simplicity goal

@ proposed modifications of the sole-flue design should be easy to implement, and should
not impede the operation of the unit.
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CFD CALCULATIONS

STRATEGY OF THE ANALYSIS

In order to find out the best design solutions a three mathematical models have been
developed:

1. 3D CFD- based model - sole-flue only,

2. 3D CFD- based model - a half of the oven,

3. One-dimensional model of heat-recovery, non-recovery coke oven.
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‘D CALCULATIONS

ADVANTAGE OF CFD

useful to understand processes
inside the oven

Temperature
Streamline 1
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I 1722

1367
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833

ADVANTAGE OF CFD

helpful when oven-design and
construction are to be optimized

w
E

DISADVANTAGE OF CFD

Long computation time

DISADVANTAGE OF CFD

Transient calculations require
super-computers !!!

|E\4/\_ @ i, TU Clausthal

J’ Institute of

Energy Process Engineering
and Fuel Technology

3.000 (1

engineering.tomorrow. together. thyssenkrupp

6-8 OCTOBER 2016 RAFAL BUCZYNSKI TIME 20 MIN. PAGE 5/ 24



STRATEGY | {D MODEL VALIDATION CONCLUSIONS

INTRODUCTION OBJECTIVES

—>
Mgas /——j\_\ .
l ‘_ 2= Mgas
~ comp. Tees Upper-oven sub-model \comp.?gas
(PART 3) () \ -
O ~
i
5
E1S
0 o
:
i
ey —— E §
- - . Y air 0
T i > |Combustion sub-mode!\ ,\
e 1 Sole-flue (PART 3) Mgas =
as l
comp.Tgas : 1 —— T '. comp. Tgas

A\ @ ke’ TU Clausthal

J’ Institute of

Energy Process Englneering engineering.tomorrow. together. thyssenkrupp
and Fuel Technology

6-8 OCTOBER 2016 RAFAL BUCZYNSKI TIME 20 MIN. PAGE 6 / 24



1D MODEL VALIDATION CONCLUSIONS
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INTRODUCTION OBJECTIVES STRATEGY

continuity equation momentum equation
sum of mass sum of head losses
flow rates \G h,

pJ discharge

The continuity equation: pQ = Z pQi =0

The momentum equation: ) hgi =0, 0r » hg = AH
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INTRODUCTION OBJECTIVES STRATEGY

Combustion and heat transfer in the hydraulic network:
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HYDRAULIC NETWORK OMBUSTION SUB.| (COKING SUB.) (INVERSE METHOD
Iteration process
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HYDRAULIC NETWORK) ( COMBUSTION SUB. "OKING SUB.| (INVERSE METHOD
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HYDRAULIC NETWORK) ( COMBUSTION SUB.) (COKING SUB. NVERSE METHOD
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HYDRAULIC NETWORK) ( COMBUSTION SUB.) (COKING SUB. NVERSE METHOD

Validation (tkCSA - Brazil)
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@ The one-dimensional time-dependent mathematical model has been used to simulate the
performance of the industrial HR coke oven battery,

@ The heart of the model is the hydraulic network sub-model which interacts with the
coking-sub-model and the combustion sub-model,

@ The temperatures measured inside the coking bed have been used to adapt the coking
sub-model to the coal blend carbonized,

@ The overall network model has predicted well the pressure and temperature distributions
in the oven,

@ The yield and composition of the raw-gas, the down-comer gas and the sole-flue gas have
been well predicted for the whole 60-hours lasting process,

@ The main advantage of the whole network model is in its short computation times,

A\ @ ke’ TU Clausthal

J’ Institute of

Energy Process Englneering engineering.tomorrow. together. thyssenkrupp
and Fuel Technology

6-8 OCTOBER 2016 RAFAL BUCZYNSKI TIME 20 MIN. PAGE 23/ 24



CONCLUSIONS

INTRODUCTION OBIJECTIVES STRATEGY 1D MODEL VALIDATION

1D COKE-OVEN MODEL IS USED TO:

@ predict the optimal channels diameter,

@ calculate position of the ”sliding-bricks” and ”’sliding-gates”,

@ identify regions of excessive temperatures inside the upper-oven or sole-flues,

@ estimate coking time.

Buczynski R et al. One-dimensional model of heat-recovery, non-recovery coke

ovens. Parts I-IV. Fuel (2016).
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